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Motivation and Objectives

To develop a unified efficient approach for discontinuity capturing with
higher-order (P2 or higher) DG discretizations in three-dimensional
unstructured meshes

To allow capabilities of using large cells and high order accuracy both at
discontinuities (with sub-cell discontinuity resolution) and away from them
in order to resolve smooth but complex flow features.

To advance implicitly in time the full coupled system for chemically reactive
flows

To apply and demonstrate dynamic h/p refinement for time dependent
complex three dimensional flow problems.
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DG discretization
oU

— 4+ dQO S
ot
® Weak form of the system
oU
[O5dQ = [VO-QUVU)dQ- [ PQUNVU) ndd+ [©-SU)dQ
Q Q 0Q2 Q

® Use the same polynomial spaces for weighting and expansion functions

® The approximate solution is U, = Ec[ﬁbiand the discrete weak form becomes

M@—fch .O(U,,VU, )dK - fcp&(Uh,VUh) nds, +fc1> SU,)dK

® Use the LLF or Roe’s flux to evaluate the interface fluxes &\ (
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LLF flux é(Uh) =0.5 [Q+ U,) n+Q (U,) n-4,.(U, U )] ERAU



DG discretization of the viscous terms

ERAU ® Define the auxiliary variable © = VUffor the gradient of the state vector
and discretize it in the same DG framework

Mc = JK'(DZI’]h ndS, - J{'V(I)l. U, dK

® Use the LDG or the BR2 scheme to evaluate the numerical fluxes
® For the current computations we used the LDG method
® For arbitrary three dimensional meshes the BR2 scheme is more

suitable because it yields more narrow stencils strictly confined to the
immediate neighbors of an element



Fundamentals of TVB and TVD limiting

~ ® To eliminate oscillations at strong discontinuities of both the flow field and
the electromagnetic field variable the following TVB limiter is used

a if |a| <@L’

m(a,,a,,a,) otherwise

n_fz(al,az,a3)={

the parameter § is an estimation of second order derivative of variable u
and it is estimated by the Laplacian @(u); V u in the transformed space

® The TVB limiter is applied to the characteristic variables of the flow field

® TvB Limiting is performed in the transformed canonical space of cubic elements
to the characteristic variables and the limited variables are transferred back to the

physical domain using collapsed coordinates
¢ Limiting is applied for all variable at the end of each RK stage

® 1vD limiting can be applied in the physical space it is more diffusive than the TVB
limiter and the computational cost is not very low



Applications of the TVB and hierarchical limiters

Hierarchical Limiter
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Adaptive mesh refinement with P1+TVB limiter for enhanced
resolution of discontinuities and complex flow features
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Adaptive mesh refinement and parallel efficiency
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The dissipative filter for P1 or higher-order expansions

Let LF_ be the dissipative flux of the filter operator along the x direction with
similar definitions for LFy and LF7z along the other directions

LFx(F*) = i [F:rl/z - Fi*—1/2]

U™ =U"" +(Ar)[LF,(F")+LF,(G)+LF (H)]
=U"™" +(At)LF

and 1n the finite element context

[, wUudQ, <[ wU"'dQ, +(At)fg w LFdQ,,



The filter dissipative fluxes

1
%k %k
Fi+1/2 = ERHI/Z (I)i+1/2

R. ,, are the right eigenvectors evaluated at Roe's averae state

and the elements ¢ of the matrix @, , are given by

*k

Divi2 =K 1y @i

the function x 6. ,,, plays the role of discontinuity detector
where 0.03<x < 2

or 1t 1s evaluated based on the smothness of computed solution

and 6, ,, 1s evaluated as suggested by Yee

N

., = max (6’ Z)

I I-m+12 °° *2™]
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where r,_, , are the elements of R~ ,AU
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Application of the filter in 1D for P1, P2, and P3 expansions
using information from neighboring elements



Application of the filter for quadrilateral elements
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Application of the filter for triangular elements
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Application of the filter in 1D for P1, P2, and P3 expansions
with oversampling and information only from the element

P1 expansion Fl. _3/9 \/

\/Pi+1/2




Higher order reconstruction is needed to
avoid oversampling

® Use the hybridazable DG and reconstruct the
numerical solution to one order higher (p to p+1)
for the filter construction

® Use the recovered function (van Leer) to
construct the filter operator

® Use higher order reconstruction within the
element by projecting the recovered function to
construct the filter operator



Application of the filter for the Sod’s shock tube problem
using information from neighboring elements
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Large pressure ratio shock tube problem
using information from neighboring elements

6 ,'
: 1 h=1/200
i exact i
| — — —n P1 :!
S P2 !
i !
it
> i
2 |
c 3
O = i
© |
i ]
2 i
B , !
i |
— 11
i | | | I | | | I | | | I | I | | | I |
0.6 0.4 0.2 0 0.2 0.4



Large pressure ratio shock tube problem
using information from the element
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Application of the filter for the Sod’s shock tube problem
sub-cell discontinuity capturing filter in the element
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Filter operator projection with P4, h=1/5

and in the cell discontinuity capturing
0.5 —

least square without c|
least square with c,
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» The Galerkin projection appears more oscillatory and affects the solution average (c,)
» Least square projection is less oscillatory and it does not require to modify the
computed solution average in the spirit of TVB limiters



Convergence rate for the Sod’s shock tube problem
filter operator from the element
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Shu and Osher density perturbation shock interaction
using information from neighboring elements
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Shu and Osher density perturbation shock interaction
using information from the element
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NACA-0012 airfoil atM=0.8, a = 1.25°

P4 numerical solution P2 surface elements
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M=3, B=30 oblique shock reflection

Convergence to the design order of accuracy has been achieved
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Flow at M = 3 in a tunnel with a step
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Flow at M = 3 in a tunnel with a step
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Reflection of a M=2 shock from a wavy
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Flow at M = 3 in a tunnel with a step
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ONERA M6 wing P1 solution at M =0.8
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ONERA M6 wing M = 0.8, P3 sub-cell shock capturing
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ONERA M6 wing P3 solution at M =0.8
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ONERA M6 wing M = 0.8, P4-P5 shock capturing
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Chemically reacting flow at M = 0.8
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Chemically reacting flow at M = 0.8




h/p adaptivity for chemically reacting flow at M = 0.8




Chemically reacting flow at M = 0.8
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Chemically reacting flow at M = 0.8
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Conclusions

A unified filtering approach for high order DG discretizations in
unstructured three-dimensional meshes was developed

Filtering is applied as a post processing stage and it is suitable for
both implicit and explicit time marching

Computationally intensive hierarchical limiting of higher order DG
discretizations is not required and sub-cell discontinuity resolution
is achieved

Benefits from filtering higher order expansions were found

Combined dynamic h/p refinement can be applied for problems
with discontinuities and embedded smooth but complex flow
features to increase efficiency of DG discretizations without
compromising numerical accuracy



